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i. Introduction. Problems in dynamic deformation of solids can be solved by various 
methods. This variety reflects the wide range of high-velocity deformation processes and 
diverse engineering applications. There are no universal techniques. Each method is limit- 
ed to a narrow range of effective applications. A general review of the state of the art 
in numeric modeling of nonstationary elastoplastic dynamic problems can be found in [i]. 

These methods can be classified according to several characteristics, depending on 
the type of processes analyzed. Explicit methods are employed in studies of wave processes. 
Implicit methods are used to solve nonwave dynamic problems with small gradients. There 
are walkthrough calculation schemes with artificial or approximation viscosity, and plans 
explicitly isolating discontinuity surface (characteristic methods). Modeling of process- 
es with a wide variation in the form of the region analyzed has remained an unmet challenge. 
With an Eulerian grid, difficulties are encountered in satisfying the boundary conditions 
on contact surfaces. Large form variations also make it difficult to utilize purely 
Lagrangian grids. In response to this need, all kinds of "hybrid" schemes have been suggest- 
ed [2, 3]. 

A simple and effective method for analysis of elastoplastic flows is the Wilkins scheme 
[4]. Applications of this method to problems with large form variations require restructur- 
ing the grid in the region of strong distortions. A special case of restructuring with 
elimination of the distorted elements on a quadrangular grid has been realized in [5]. Sub- 
sequently, the authors of [5] resorted to grid restructuring for explicit isolation of the 
surface of a separation crack [6]. An alternative algorithm, which takes into account fis- 
suring or sliding surfaces by splitting the nodes of a grid, was developed in [7, 8]~ An 
algorithm of irregular restructuring of the grid developed for the finite-element method in 
[9] is more effective. The topology of regular grids becomes unsuitable with large distor- 
tions and for approximations of geometrically complex regions. 

In this connection, it is desirable to construct and implement a Wilkins procedure on 
irregular triangular grids with a general restructuring algorithm. A first attempt at imple- 
menting such an algorithm was undertaken in [I0]. 

2. Triangulation. The method of natural approximation of derivatives [4] imposes no 
constraints on the type of difference grid. For regions of a complex geometry or with large 
distortions in the calculation grid it is convenient to take an irregular triangular grid 
for the starting point. In fact, the regularity requirement is in conflict with the desire 
to improve approximation accuracy in the local regions where restructuring is undertaken. 

Several algorithms of automatic triangulation for complex regions have been proposed 
in [ii, 12]. Their applications are determined by the type of problem, the type of region, 
etc. The following sequence of steps in triangulation seems appropriate: dividing the 
initial region into subregions in accordance with the physical essence of the problem or 
its geometry, constructing in each subregion a coarse grid independent of the other sub- 
regions, condensing the grid by introducing new nodes and/or modifying the topology, smooth- 
ing the grid for the entire region or separately by subregions. 

This sequence of steps has been implemented as modules programmed in Fortran. The 
quality of the grid depends mainly on the first two steps. The basic module of the second 
step involves triangulation by reduction of the region [3] and irregular restructuring in 
grid formation. 

The operation of grid smoothing is accomplished by successive transfer of each internal 
node of the grid to the center of gravity of its "star." The transfer magnitude depends 
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on the iteration number and the weight of the node which are specified in advance as grid 
constants. 

3. Irregular Restructuring and Interpolation. A program for irregular restructuring 
has been created to improve the grid in the local region of large form variations or for 
initial adaptation of the grid to specifics of solution. Restructuring algorithms have 
been discussed in several publications (in particular, [6, 9, ii, 14, 15]). Typically, 
grid improvement is achieved by diminution or aggregation of the mesh. 

In the present paper, we operate with an expanded set of basic restructuring operations 
[9, ii]: change of the diagonal; introduction of a new node on an edge; elimination of an 
edge; a new triangulation of a "star" of elements; and introduction of a new inner node. 
The capacities of the algorithm are expanded by taking into account a larger number of nodes 
and elements that contribute to local grid enhancement. The function of the measure of 
element distortion proposed in [9] is used as the grid distortion criterion that determines 
the need for restructuring. 

In interpolation of variables from the old grid to the new one, a conservative inter- 
polation algorithm makes use of the mass conservation integral [16] 

mk = ~ p(r)dV (1) 
Vk 

[m k and V k are the mass and volume of the new element; p(r) is the density distribution 
function for the state of the old grid]. 

On the basis of (i), we calculate the volume increment AVij in the new element i rela- 

tive to the oid element j. Interpolation of variables iexcept for mass, density, and volume) 
with the aid of AVij appears as 

n 

= A V ~ ,  i = l , m ,  

where ~i, ~j are the values of the variable on the new and old grids, respectively; n and 

m are the number of elements in the new and old grids in the fragment being restructured. 

Calculation of volume increments AVij encounters difficulties with finding, on uncoor- 

dinated grids, a portion of the volume of the old element j incorporated in the new element 
i. To this end, a net of points (approximately i00 points per element) is "injected" into 
the old grid. Each point has a volume of its own. Its value depends on the number of 
points falling upon the old element. The volume increment AVij is the sum of volumes of 

the points that are shared by the new element i and the old element j. 

The numbers of nodes and elements can change as a result of restructuring. Velocities 
are interpolated linearly by the velocities of three old nodes surrounding a given new node. 

4. Differential Equations and Their Approximations. Difference approximation has been 
employed to find node velocities on an irregular triangular grid [17]. Deformation rates 
have been determined with the use of an integral representation of partial derivatives [4] 
taking into account a triangular grid [17]. Other difference relations and time integra- 
tions have been constructed similarly in [4]. 

The topology of the grid is described by indirect addresses which link each element 
number with the numbers of three surrounding nodes. The description of connections is imple- 
mented in the form of a list. Examples of list applications can be found in [ii, 13]. With 
indirect addressing, the following operations are simplified: use of arbitrary triangular 
grids; introduction and elimination of nodes and elements; irregular restructuring; and 
adjustment for cracks. 

5. Test Calculations. For verification of the general algorithm, we will examine the 
collision of deformable rods with a rigid wall. 

In the first example, we will consider in a plane two-dimensional statement, the impact 
at 45 ~ and the flow spread of an aluminum striker rectangular in plan with zero yield 
strength. The impact velocity is v 0 = I km/sec; the initial density is P0 = 2.7 g/cm3; the 
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p a r a m e t e r s  o f  t h e  c h a r a c t e r i s t i c  e q u a t i o n  p = A ( p 0 / p )  n - B a r e  t h e  f o l l o w i n g :  n = 3 ~  

A = B = 2 3 . 7  GPa;  b u l k  m o d u l u s  K = 7 4 . 4  GPa;  s h e a r  m o d u l u s  G = 2 8 . 5  GPa.  

F i g u r e  1 shows  t h e  i n i t i a l  p o s i t i o n  o f  t h e  s t r i k e r  ( a )  a n d  i t s  p o s i t i o n  a t  d i m e n s i o n -  
l e s s  time t = 4 sec with restructuring (b) and without it (c). For calculations until the 
time t = 4.2 sec without restructuring, 1840 steps were required; I000 steps were required 
to bring the process up to t = 5.7 sec. While the time step reduction with restructuring was 
At/At 0 = 0.4, without restructuring it was At/At 0 = 0.09. Thus, further calculation without 

restructuring is practically impossible. A comparison of the pulse components Px/P0 and 

Py/P0 in calculations with and without restructuring for times t = i, 2, 3, and 4 sec as- 
certained a practically perfect match. The total energy errors 1 - E/E0 for the same times 
were 0.02, 0.07, 0.065, 0.09 and 0.025, 0.045, 0.06, and 0.07, respectively. For the time 
t = 5.7 sec, a total of 14 restructurings were executed. 

In the second example, we considered in an axisymmetric statement the impact of a 
cylindrical aluminum rod against a rigid wall. The yield strength of aluminum Y0 = 0.5 GPa. 
Figure 2 illustrates deformable rods and the lines of equal deformation intensity levels 
(%) without (a) and with (b) restructuring of the grid at final time points. The restruc- 
turing obviously preserves the qualitative and quantitative characteristics of the process. 

In series of calculations modeling an impact of deformable rods against a rigid wall 
[18], the deviation of rod shortening for v 0 ~ 400 m/sec did not exceed 3% and for v 0 ~ 

600 m/sec did not exceed 10%. 

6. Interaction of a Striker with Deformable Plate. A rigid cylindrical striker pene- 
trates a plate of aluminum alloy 1911, hitting the plate with its flat endface. The mechan- 
ical characteristics of the alloy were given in [19]. The ratios of striker diameter to 
plate thickness and to plate diameter are 0.3 and 0.i, respectively. In the calculations 
we took account of the thermal effects due to volume change A V and plastic work of the 
forming process: 

9cAT = - -3~KTAV + ( t / V " 3 ) ~ A e = ,  ( 2 )  

where c is the specific heat capacity; AT is the temperature increment; ~ is the thermal 
expansion coefficient; o u and c u are the stress and strain rates; K is the current dilation 
modulus. 

In relation (2), 

~(T) = ~o(1 + 0.2T/Tps c(T) = Co(t + O,3T/Tps ( 3 )  

[~o = 2 . 2 " 1 0 - s  d e g  - ~ ,  Co = 5 . 7 5  k J / ( k g ' d e g ) ,  Tps = 6 0 0 ~  
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Fig. 3 

The yield strength of the plate material is assumed to be a function of the tempera- 
ture, the accumulated strain, and the strain rate: 

flu = exp [ - - l ,4(2 ,07r /TpE)l /s  ] [~(eu) + ~ (e~ )  ]; ( 4 )  

cs (~u) = ~ [k - -  (k - -  t) exp (be~)]; ( 5 )  

w h e r e  a s  ~ = 0 . 4 5  GPa; b = - 2 5 ;  k = 1 . 1 - 1 . 5 ;  J = 100 s e c - 1 ;  B = 0 . 6 5 - 0 . 7 ;  ~T = ~o( 1 - 0 . 3 2  

T / T p ~ ) ;  ~o = 0 . 2 5 " 1 0 - 2  G P a ' s e c .  

The temperature behavior in (3) and (4) is formulated on the basis of reference data 
from [20]. Relation (5) approximates experiments with alloy 1911. Expression (6), which 
takes into account the effect of the rate of deformation, is borrowed from [21]. 

The temperature effect on the shear modulus is expressed by 

G = G o e x p [ - - l . 4 ( l . 5 T / T  E)3]. 

The computer experiment indicated that the inclusion of temperature in the defining 
equations for the aluminum alloy at mean impact velocities of v 0 ~ 300-800 m/sec had little 
effect on the penetration process. It resulted in a stronger localization of deformations 
near the side surface and the crater bottom. The temperature distribution near the crater 
was similar to that of the deformation rates ~u. Thus, when the striker penetrates deep 
into the plate at medium velocities the energy dissipation asociated with plastic strains 
is the principle contributor to the temperature-related change. 

A study of the effect of deformational strengthening and the yield strength upon the 
penetration process indicated the following. At small k ~ 1.05 (for slightly reinforcible 
material) the growth of Os ~ (with analysis of the variants of Os ~ = 0.4; 0.5; 0.6 GPa) has 

virtually no effect on the strain distribution around the crater, although the resistance 
to penetration is slightly increased. At k = 1.4 (for a strongly reinforcible material) 
the region of pronounced radial deformations is expanded. For example, the boundary of 

Fig. 4 
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deformation intensity region ~u = 10% relative to the radius (relative to the striker dia- 

meter) is 1.6 for the material without reinforcement and 2.4 for the material with rein- 
forcement. In both cases, the deformed zones under the striker endface are equal. A large 
volume of the plate is involved in the work for the intensely reinforcible material due 
to its nonuniform resistance to plastic deformation. 

We investigated the effect of the velocity of the striker passage through a Certain 
plate cross section upon the distribution of strains near the crater. The data indicate 
slight differences entirely due to the behavior of the rear facing layers. Thus at a cur- 
rent crater depth equal to half the plate thickness for v 0 = 550 and 800 m/sec the reverse 
bulge on the plate is smaller in the latter case, while the inertial outflow and the expan- 
sion of the crater near the face surface is, of course, smaller in the former case. With 
increasing impact velocity the conical region of maximum displacement under the striker 
is slightly narrowed. This is illustrated by the isotherms and the crater cross section 
for v 0 = 300 m/sec (a) and 800 m/sec (b) at a penetration depth on the order of 1.5 striker 
radii (Fig. 3). 

To estimate the effect of penetration velocity on the deformation pattern and test 
the calculation algorithm, we compared the processes of static penetration (experimental) 
and dynamic penetration (calculated) with v 0 = 300 m/sec. Figure 4 shows the calculated 
and experimental lines of equal displacements U z (a) and U r (b). (The experimental data 
were kindly provided by Yu. Yu. Lesnichenko). The experimental method with moire bands 
is similar to the technique described in [19, 22]. A look at Fig. 4 validates this computer 
program. The figure also shows the similarity of deformation processes during static and 
dynamic penetration of a striker into a plastic metal sheet at low and medium velocity of 
impact. 
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AXIAL COMPRESSION OF AN INHOMOGENEOUS CONE 

M. A. Zadoyan and N. B. Safaryan UDC 539.376 

A concentrated axial force is applied to the apex of an infinite cone. 
is assumed to be incompressible, inhomogeneous, and conforming to the power law of rein- 
forcement. The compression of this cone is investigated. The corresponding homogeneous 
problem was studied in [i, 2]. 

Differential equations of equilibrium for an axisymmetric deformation in spherical 
coordinates in the usual notations appear as 

aGar + rl a%ooo + -71 (2~  - -  Go --  o~ + ~o ctg 0) = 0, 

O~r 0 t 0% t 
ar + 7""76- + "7" [(Go - -  o~) ctg 0 + 3T~o] = 0, 

0Trio t O~0~ t 
ar + "7 a"-6- + 7 ( 3 ~  + 2xo~ ctg 0) = 0. 

The material 

(1) 

The reinforcement law for this material is 

G 0=k~(0)%m, 0<m<l, 

where k is a constant; ~(O) is a given function determined experimentally; 

i Vi . . . . . .  G0 = 7 or - = + (o0 - + - or) + 6 + + 

(2)  
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